通过高压TGA优化催化反应

Frieder Dreisbach
March 28, 2022

催化反应无处不在:从塑料和面包到全世界90%以上的化学品,无数的商品和材料都是在催化剂的帮助下生产出来的。1 催化剂是加速缓慢化学反应的一种物质。更快的反应在技术和经济上都更具竞争力。此外,优化后的催化剂在降低能源和资源消耗以及降低二氧化碳排放方面具有巨大潜力。

多相催化

在工业应用中,催化或使用催化剂的反应分为两类,即均相和非均相。均相是催化剂与反应物处于同一相(通常为液相),另一类是非均相,其中固体催化剂通常与流体(气体或液体)反应物反应。

多相催化是一个界面过程,即可接近催化剂表面积的大小影响反应速率。大多数催化活性材料都是具有大表面质量比的小颗粒,以少量的催化剂即可实现高的反应性。

研究人员在应用条件下测量反应速率,以优化其工艺,并最大限度地利用昂贵的催化剂材料。使用性能更好的催化剂材料,反应需要的催化剂更少,因此成本更低,能耗更低,生产产品所需的自然资源更少。

Figure 1: Schematic representation of catalytic activity

通过高压TGA测试催化剂

高压热重分析(HP-TGA)使研究人员能够在实验室规模的实际工作条件下研究催化剂与气相反应物之间的反应。反应条件包括高压、高温和反应性气体混合物和蒸汽环境。催化剂因氧化、还原或结焦产生的活化与失活,都与重量变化有关,可在HP-TGA中以高分辨率测量。同时,反应的产率和动力学可以通过在线质谱、气相色谱、FTIR或其他方法的逸出气体分析进行监测。这些数据对于优化反应条件和开发改进催化剂材料非常有帮助。

HP-TGA仪器可用作催化反应器,同时监测催化剂重量变化。这种实验装置能够帮助研究人员准确识别引起催化反应以及催化剂材料的变化的条件,如活化或失活。HP-TGA的反应气氛可以包括常见的反应气体,如氢气、甲烷、乙烷、二氧化碳或一氧化碳,以及蒸汽,以及高达1100°C的温度和高达80巴压力的实验条件。

在TGA仪器中对固体催化剂进行催化气相反应的主要好处是在实验过程中测量催化剂的重量,以便在催化剂活化或失活过程发生时进行持续定量检测。

优化产量和生产力

提高催化反应效率的关键是为给定的反应选择最佳的操作条件。通过使用替代原料的开发催化工艺,可以进一步降低产品成本和环境影响,这也需要合适的工艺控制过程。2

优化催化条件示例:二氧化碳的甲烷化是一个通过与氢气还原生成甲烷的过程,其反应方程式为:CO2 + 4 H2 ↔ CH4 + 2 H20。来自可再生能源的氢气可用于将二氧化碳转化为绿色甲烷,从而将其化学加工原料使用。该反应作为电力转天然气(PtG)概念中的一个关键过程,这一反应具有高度重要的商业意义。在这一示例中,氧化铝负载的镍催化剂被用于甲烷化反应的一系列催化实验,其混合气体为2%的CO2、8%的H2和90%的Ar的混合物。通过在线质谱仪,在275°C和350°C之间的不同温度以及1.5巴、15巴和30巴的条件下,监测反应产量的压力和温度依赖性。图2比较了监测质量跟踪m/z 15在三个压力下的甲烷产量进行了对比,显示了甲烷浓度是甲烷化反应的目标。

图 2:在线MS中的甲烷信号记录压力和温度对甲烷化反应转化率的影响。

比较不同压力和温度下的 MS 数据表明,更高的压力导致更高的反应产率。 温度对收率的影响相似,但与 1.5 巴的测量结果相比,在 15巴和 30巴时的影响更为明显。 在任何压力下都没有检测到催化剂重量变化,这证明没有发生失活或副反应。

催化剂失活

催化剂失活是指随着时间的推移,催化剂失去活性或选择性。所有催化剂都会随着时间的推移而失活,并且必须进行更换,但失活前的操作时间可能会有很大的变化:这取决于催化剂的类型、工艺和维持最佳操作条件等因素。催化剂可以在几秒钟内失活或按计划运行数年。3对于工业催化过程,催化剂失活是一个主要的经济风险。停止工艺流程以及更换催化剂每年给化学工业造成数十亿美元的损失。4

催化剂失活包括常见的化学、机械和热机理,可分为不同类型:即中毒、结焦或结垢和老化。5, 6

尽管从长远来看,催化剂失活通常是不可避免的,但往往可以通过适当的过程控制措施来避免过早失活,7 这是研究和开发的主题,其目标是设计更强大的工业工艺和催化剂材料8,从而推迟甚至逆转催化剂失活。

催化剂结焦评估

结焦导致的催化剂失活是石油精炼和石化工业中的一个重要的技术和经济问题。通过使用其他催化活性金属和/或调整反应条件,如温度、压力或气体成分,可以提高催化剂的抗结焦性。优化结焦形成的材料和工艺需要测量真实反应条件下的催化剂失活动力学。

结焦测量示例:在700°C和10巴下的蒸汽重整反应如下所示。反应气氛由氩气、甲烷和蒸汽组成,蒸汽与甲烷的比例为4:1。在这些条件下,在催化剂重量保持不变的情况下,通过在线MS检测氢气生成量。通过调整甲烷和蒸汽流量,将蒸汽与甲烷的比例变为1:1,然后变为1:2,以评估结焦的起始点。图3显示了催化剂重量和蒸汽与甲烷的比例随时间的变化。

图3:在10巴和700°C条件下进行催化蒸汽重整反应。甲烷浓度增加会导致瞬间结焦,从而导致催化剂重量增加。

当蒸汽与甲烷的比例为4:1和1:1时,催化剂重量保持稳定。当比例改变为1:2时,过量的甲烷立即导致重量快速增加0.3%wt/min。这种重量增加是由催化剂上形成结焦(元素碳)引起的。这种结焦过程可以逆转,通过关闭甲烷流,催化剂可以再生。现在,通过蒸汽氧化焦炭,导致快速失重率为0.9%(wt)/min。仅在15分钟内,就从催化剂表面去除了超过4 mg的焦炭。这证明了如果反应条件调整得足够快,结焦过程便是可逆的。图4显示,如果在结焦开始后反应条件没有迅速改变,结焦会导致大量碳的形成。

图4:在700℃和10巴的蒸汽重整反应中焦炭在商用镍催化剂上的沉积。

优化催化只需通过一个实验

正如上述示例所表明的,可以通过选择最佳的催化剂和反应物,来优化反应条件,以避免、延迟或逆转失活来改善催化作用。增强的催化反应提供了更高的可持续性,同时降低了成本。

高压TGA是研究催化剂性能和优化多相催化反应的一种主要方法。如甲烷化、蒸汽重整和许多其它重要商用技术化反应等气相反应,都可以在HP-TGA仪器中,在相关的压力、温度和气体或蒸汽成分条件下进行。反应转化率可以通过质谱、FTIR或其他合适的EGA分析方法进行监测,并且催化剂重量信号提供了关于活化和失活过程的宝贵实时数据。

您想了解更多关于 TGA 在优化催化材料和工艺方面的潜力吗? 请查看我们关于该主题的应用报告或观看极端条件下的 TGA 技术网络研讨会或使用 TGA 方法优化催化剂的网络研讨会。 请随时联系 TA 仪器专家,讨论您的测试需求并探索适合您实验室的理想仪器。

 

参考文件:

  1. Ma, Z. and Zaera, F., Heterogeneous Catalysis by Metals, in King, R. Bruce; Crabtree, Robert H.; Lukehart, Charles M.; Atwood, David A. (eds.), Encyclopedia of Inorganic Chemistry, John Wiley & Sons, Ltd.
  2. Anderson, N., (2000), Practical Process Research & Development, Optimizing Catalytic Reactions, 185-201.
  3. Bartholomew, C.H., Mechanisms of catalyst deactivation, Applied Catalysis A: General 212 (2001) 17–60.
  4. Boskovic G., Baerns M. (2004), Catalyst Deactivation, in: Baerns M. (eds) Basic Principles in Applied Catalysis. Springer Series in Chemical Physics, vol 75. Springer, Berlin, Heidelberg.
  5. Figuerido, J.L. (Ed.), Progress in Catalyst Deactivation, NATO Advanced Study Institute Series E, Marunus Nijhoff, Boston, 1982.
  6. Hughes, R., Deactivation of Catalysts, Academic Press, London, 1984 (Chapter 8).
  7. Oudar, J. and Wise, H., Deactivation and Poisoning of Catalysts, Marcel Dekker, New York, 1985, 1.
  8. Butt, J.B., Petersen, E.E., Activation, Deactivation, and Poisoning of Catalysts, Academic Press, San Diego, 1988.
  9. Wolf, E. E. and Alfani, F., (1982), Catalysts Deactivation by Coking, Catalysis Reviews, 24:3, 329-371